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Introduction

Dynamic programming is the essential tool in dynamic economic
analysis.

Numerical methods typically approximate the value function and use
value function iteration to compute the value function for the optimal
policy.

Polynomial approximations are natural choices for approximating value
functions when we know that the true value function is smooth.

This approach is unstable because standard methods such as
interpolation and least squares fitting do not preserve shape.

Introduce shape-preserving approximation methods that stabilize
value function iteration.
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Why do we care about shape preservation?

Interpolation is any procedure that finds a “nice” function that goes
through a collection of prescribed points.

We refer to the curvature and monotonicity properties of a function
as aspects of its shape.

Concave (monotone) data may lead to nonconcave (nonmonotone)
approximations.
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Example: Neoclassical Growth Model

The Dynamic Programming version of the discrete-time finite-horizon
optimal growth problem is the Bellman equation:

Vt(k) = max
c

u(c) + βVt+1(k+)

s.t. k+ = F (k)− c

0 ≤ k+ ≤ K̄

c ≥ ε
k0, VT (k) given

The value function is defined on a continuum k ∈ [0, K̄ ].

But computers cannot deal with this directly.
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Strategies to solve the model

1 Discretize the State Space:
discretize continuous state space k ∈ [0, K̄ ] so that k ∈ {k1, . . . , knK }.
the values of c must be such that they keep k in the grid.
no shape issues.

2 Linear-Quadratic Models:
assume that value function is quadratic and policy function is linear.
solve for the unknown coefficients of these functions.
no shape issues.

3 Parametric Dynamic Programming:
parameterize the critical functions and find some parameter choice
which generates a good approximation.
shape issues.
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Generalization of the Example

Deterministic Finite-Horizon Dynamic Programming Problem:

Vt(x) = max
a∈D(x ,t)

ut(x , a) + βVt+1(x+)

s.t. x+ = gt(x , a)

VT (x) given

x : vector of continuous state variables in Rd

Vt(x): value function at time t ≤ T

a ∈ D(x , t): vector of choice variables in the feasible set

x+: value of the continuous state variables in the next period

gt(x , a): time-specific law of motion

ut(x , a): payoff flow at time t

β: discount factor
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Parametric Dynamic Programming

Useful when we don’t want to discretize the state space nor assume a
specific functional form for the value function.

Approximate the value function with a continuous parametric
function:

V (x) ≈ V̂ (x ; c)

where V̂ (x ; c) is an approximation with parameters c .

Solving the approximate problem means finding a set of parameters c
such that V̂ (x ; c) “approximately” satisfies the Bellman equation.
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General Algorithm

Parametric DP with value function iteration for-finite horizon problems:

Initialization:
choose approximation nodes Xt = {xit : i = 1, . . . ,mt} for every t < T .
choose a functional form for V̂ (x ; c).
let V̂ (x ; cT ) ≡ VT (x) given.

for t = T − 1,T − 2, . . . , 0, iterate through steps 1 and 2.

1 Maximization step: Compute

vi = max
ai∈D(xi ,t)

ut(xi , ai ) + βV̂ (x+i ; c t+1)

s.t. x+i = g(xi , ai )

for each xit ∈ Xt , i = 1, . . . ,mt .

2 Fitting step: Compute the c t such that V̂ (x ; c t) approximates (xi , vi )
data.
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Approximation Method

An approximation method consists of two parts:

1 Basis functions: φj(x), j = 0, 1, . . . ,∞.

a set of basic functional building blocks that can be stacked on top of
one another so as to have the features that we need.

Every continuous function in the function space can be represented as
a linear combination of basis functions.

V̂ (x ; c) =
∑n

j=0 cjφj(x) is a degree-n approximation.

Example: Φ = {φj(x)}∞j=0 = {1, x , x2, . . . , xn, . . . }.

2 Approximation nodes/Collocation points: can be chosen as

uniformly spaced nodes.

Chebyshev nodes.

some other specified nodes.
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Chebyshev orthogonal polynomials approximation

Chebyshev polynomials are a special class of polynomials that are
good for smooth nonperiodic functions.

For every t < T :

1 Set the degree of the polynomial approximation we will use: n.

2 Choose m ≥ n + 1 approximation nodes/collocation points: these must
be m points in the period-t state space.

if m = n + 1, it is interpolation.
if m > n + 1, it is regression.

3 Chebyshev orthogonal polynomials (basis functions φj(x) = Tj(x)):

Domain: [−1, 1]
T0(x) = 1
T1(x) = x
Tj+1(x) = 2x Tj(x)− Tj−1(x)
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Chebyshev polynomial approximation

Chebyshev orthogonal polynomials graphs for j = 1, 2, 3, 4:

General intervals: change of variable from x ∈ [a, b] to y ∈ [−1, 1].

y = −1 + 2
x − a

b − a
and T ∗j (x) ≡ Tj(y) = Tj

(
− 1 + 2

x − a

b − a

)
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Chebyshev Approximation Algorithm in R1

Initialization: for every t < T

compute the set of Chebyshev approximation nodes (the zeros of the
mth degree polynomial), Xt = {xit : i = 1 . . . ,mt}.
V̂t(xit ; c

t) =
∑nt

j=0 c
t
j T
∗
j (xit)

let V̂T (x ; cT ) ≡ VT (x), given.

for t = T − 1,T − 2, . . . , 0:

Maximization step: Compute

vit = max
ait∈D(xit ,t)

ut(xit , ait) + βV̂t+1(x+it ; c t+1)

s.t. x+it = g(xit , ait)

for each xit ∈ Xt , i = 1, . . . ,mt .

Now we have a Lagrange data set: {(xit , vit) : i = 1, . . . ,mt}.
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Chebyshev Approximation Algorithm in R1 (cont.)

Fitting step: solve

min
ctj

mt∑
i=1

( n∑
j=0

ctj T
∗
j (xit)− vit

)2

which leads to

ct∗j =

∑mt
i=1 vit T

∗
j (xit)∑mt

i=1 T
∗
j (xit)2

Arrive at the approximation for Vt(x):

V̂t(x ; ct) =
n∑

j=0

ct∗j T ∗j (x)
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Shape-Preserving Approximation Methods

In some cases, it is important to construct approximations that
preserve shape as well as are accurate.

One problem for Chebyshev interpolation is the absence of
shape-preservation in the algorithm.

Some basic methods for preserving shape:

1 Discretization of the State Space

2 Piecewise-Linear Interpolation: preserves positivity, monotonicity,
and concavity. However, it is not differentiable.

3 Shape-preserving quadratic spline interpolation: Schumaker (1983)
algorithm produces a smooth function which both interpolates data
and preserves some shape.

4 Shape-preserving Chebyshev polynomial interpolation
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Schumaker Shape-Preserving Interpolation

1 Take level vi (and maybe slope) data at nodes xi , i = 1, . . . ,m.

2 Add intermediate nodes ξi ∈ [xi , xi+1].

3 Run quadratic spline with nodes at the x and ξ nodes which
interpolate data and preserves shape.

4 Schumaker formulas tell one how to choose the ξ and spline
coefficients.

5 Reference: “On Shape Preserving Quadratic Spline Interpolation”,
Larry L. Schumaker, SIAM Journal on Numerical Analysis, 1983.

6 A revised version of Schumaker interpolation is given in Cai (2009).
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Shape-Preserving Approximation Methods: comments

Discretization and piecewise linear interpolation preserve monotonicity
and concavity. However, they make the objective function in the
maximization step nondifferentiable, which forces one to use slow
methods in the optimization step.

The Schumaker method is only a C 1 approximation of the value
function, thereby slowing convergence of Newton-style optimization
methods.

The problem with ordinary methods —such as polynomials and
splines combined with interpolation or regression— in the fitting step
is that the result may be nonconcave or nonmonotone even if the
data are consistent with monotonicity and concavity.
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Shape-Preserving Chebyshev Polynomial Interpolation

If theory tells us that the true value function is strictly increasing and
concave, then add constraints to the fitting criterion that will impose
shape restrictions.

Create an optimization problem that modifies the Chebyshev
coefficients so that concavity and monotonicity of the value function
will be preserved.

We use Chebyshev polynomials and least-squares approximation with
shape constraints to guarantee shape preservation.

Reference: “Shape-preserving dynamic programming”, Yongyang Cai
and Kenneth L. Judd, Math Meth Oper Res (2013).
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Shape-Preserving Chebyshev Interpolation

We begin with the Lagrange data {(xi , vi ) : i = 1 . . . ,m} generated
by the maximization step of the Algorithm.

Next, choose some points zi ′ , i
′ = 1, . . . ,m′, called shape checking

nodes.

Impose the requirement that V̂ (x ; c) satisfies the shape conditions at
the shape checking nodes.

Choose the parameters c to minimize approximation errors but also
satisfy the shape conditions.
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Shape-Preserving Chebyshev Interpolation

Use an undetermined method where the number of unknown
coefficients may be greater than the number of approximation nodes.

This allows the curve to match the data while also satisfying shape
constraints.

Solve the underidentification problem by penalizing high-order terms.

Summary: for each t < T

1 Lagrange data: (xi , vi ), i = 1, . . . ,m
2 Number of unknown coefficients: n + 1 ≥ m
3 Function for fitting:

∑n
j=0 cj T

∗
j (x)

4 Shape checking nodes: zi ′ , i
′ = 1, . . . ,m′

5 Solve a linear programming (LP) problem
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LP model for Chebyshev shape-preserving approximation

min
cj ,c

+
j ,c
−
j

m−1∑
j=0

(c+j + c−j ) +
n∑

j=m

(j + 1−m)2(c+j + c−j )

s.t.
n∑

j=0

cj T
∗
j (xi ) = vi , i = 1, . . . ,m, m interpolation constraints

n∑
j=0

cj T
′∗
j (zi ′) > 0, i ′ = 1, . . . ,m′, m’ monotonicity constraints

n∑
j=0

cj T
′′∗
j (zi ′) < 0, i ′ = 1, . . . ,m′, m’ concavity constraints

cj = c+j − c−j , j = 0, . . . , n

c+j ≥ 0, c−j ≥ 0, j = 1, . . . , n
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LP model for Chebyshev shape-preserving approximation

Usually we need m′ > m so that the shape preservation on the shape
checking nodes implies that shape is preserved everywhere.

Increase the set of shape checking nodes if shape has not been
preserved.

Let n + 1 ≥ m so that both m interpolation equality constraints and
2m′ shape-preserving constraints could hold in the model.
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Application: discrete-time optimal growth

Find the optimal consumption function and the optimal labor supply
function such that the total utility over the T -horizon time is maximal:

Vt(k) = max
c,l

u(c , l) + βVt+1(k+)

s.t. k+ = F (k , l)− c

k ≤ k+ ≤ k̄ . c , l ≥ ε

VT (k) =
u(f (k , 1), 1)

1− β

where

u(c , l) =
(c/A)1−γ − 1

1− γ
− (1− α)

l1+η − 1

1 + η

A = (1− β)/(αβ)

F (k , l) = k + f (k , l) = k + Akαl1−α
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Application: discrete-time optimal growth

Cai & Judd (2013), “Shape-preserving dynamic programming”.

α = 0.25, β = 0.99, γ = 8, η = 1, T = 20, k ∈ [0.1, 1.9], ε = 10−6.

m = 10 (Chebyshev approx. nodes), n = 9 (degree of Chebyshev
pol.), and m′ = 20 (equally-spaced shape checking nodes in [−1, 1]).
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Multidimensional Approximation Methods

Fix a period t, drop subscript t for clarity.

Lagrange data: {(xi , vi )}Mi=1 ⊂ Rp+q, where xi ∈ Rp and vi ∈ Rq.

Objective: find f : Rp 7→ Rq such that vi = f (xi ).

Need to choose interpolation nodes carefully.

Task: find combinations of interpolation nodes and basis functions to
produce a nonsigular (well-conditioned) interpolation matrix.

I will first quickly introduce interpolation in p > 1 dimensions and
then shape-preserving methods.
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Tensor Products Bases

Lagrange data: {(xi , vi )}Mi=1 ⊂ Rp+q, where xi ∈ Rp and vi ∈ Rq.

We can use tensor products of univariate functions to form bases of
multivariate functions.

Given a basis for functions of the single variable xik ,
Φk = {φkj (xik)}∞j=0, the p-fold tensor product basis for functions of p
variable (x1, x2, . . . , xp) is

Φ =

{ p∏
k=1

φkjk (xik)
∣∣ jk = 0, 1, . . . , k = 1, . . . , p

}
One problem with tensor product bases is their size.
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Tensor Products Bases

Use finite subsets of the full tensor product basis.

Take the first n elements of each univariate basis and construct the
tensor product of these subbases.

The p-dimensional tensor product will have np elements.

This exponential growth in dimension makes it quite costly to use the
full tensor product subbasis.

Solution: bases that grow only polynomially as the dimension
increases (complete polynomials).

Now I’m going to present an example in two dimensions
(p = 2, q = 1) using Chebyshev basis functions (without shape
preservation).
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Chebyshev Approximation Algorithm in R2 (p = 2, q = 1)

Objective: given a function V (x1, x2) defined on [a, b] x [d , e], find
its Chebyshev polynomial approximation V̂ (x1, x2; c).

Compute the m ≥ n + 1 Chebyshev approximation nodes on [−1, 1]:

zi = −cos

(
2i − 1

2m
π

)
, i = 1, . . . ,m

Adjust the nodes to the [a, b] and [d , e] intervals:

x1i = (zi + 1)

(
b − a

2

)
+ a, i = 1, . . . ,m

x2i = (zi + 1)

(
e − d

2

)
+ d , i = 1, . . . ,m

Evaluate V at the approximation nodes:

vi ,l = V (x1i , x2l), i = 1, . . . ,m, l = 1, . . . ,m
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Chebyshev Approximation Algorithm in R2 (cont.)

1 Compute Chebyshev coefficients, chj , ∀h, j = 0, . . . , n:

c∗hj =

∑m
i=1

∑m
l=1 vi ,lTh(zi )Tj(zl)

(
∑m

i=1 Th(zi )2)(
∑m

l=1 Tj(zl)2)

2 Arrive at the approximation for V (x1, x2), x1 ∈ [a, b], x2 ∈ [d , e]:

V̂ (x1, x2; c) =
n∑

h=0

n∑
j=0

c∗hjT
∗
h (x1)T ∗j (x2)
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Shape-preserving approximations in higher dimensions

Shape issues are much harder in higher dimensions.

There is no general method.

Some basic methods for preserving shape in higher dimensions:

1 Discretization of the State Space

2 Bilinear Interpolation: interpolates the data linearly in both
coordinate directions.

it preserves positivity and monotonicity, but not concavity.

it produces kinks in the value function and discontinuities in the policy
function.

3 Shape-preserving Chebyshev interpolation
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Bilinear Interpolation

Bilinear interpolation constructs an approximation that interpolates
the data linearly in both coordinate directions.

Suppose we have the values of f (x , y) at (x , y) = (±1,±1).

Cardinal interpolation basis on [−1, 1]2:

φ1(x , y) =
1

4
(1− x)(1− y), φ2(x , y) =

1

4
(1 + x)(1− y)

φ3(x , y) =
1

4
(1 + x)(1 + y), φ4(x , y) =

1

4
(1− x)(1 + y)

Each of these functions is zero at all but one of the points (±1,±1).
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Bilinear Interpolation

The approximation to f on the square [−1, 1] x [−1, 1] is:

f̂ (x , y) = f (−1, 1)φ1(x , y) + f (1,−1)φ2(x , y) + f (1, 1)φ3(x , y) + f (−1, 1)φ4(x , y)

Graph of the basis function φ1:

φ1 is convex in the (−1,−1) to (1, 1) direction, and concave in the
(−1, 1) to (1,−1) direction.
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Shape-preserving Chebyshev interpolation

Begin with Lagrange data {(xi , vi ) : xi ∈ R2, vi ∈ R, i = 1, . . . ,M}
generated by the maximization step of the Algorithm.

Choose some points zi ′ ∈ R2, i ′ = 1, . . . ,M ′, called shape checking
nodes.

Choose functional form V̂ (x ; c) =
∑n

h=0

∑n
j=0 chj T

∗
h (x1)T ∗j (x2).

Add shape-preserving constraints: restrictions on directional
derivatives.

There will be many constraints, but these will be linear constraints
(i.e., linear in the coefficients c).

Number of unknown coefficients: (n + 1)2 ≥ M
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Shape-Preserving Chebyshev approximation in R2

min
chj ,c

+
hj
,c−

hj

M−1∑
h=0

M−1∑
j=0

(c+hj + c−hj ) +
n∑

h=M

n∑
j=M

(h + j + 1− 2M)2(c+hj + c−hj ), s.t.

n∑
h=0

n∑
j=0

chj T
∗
h (x1i )T

∗
j (x2l) = vil , i , l = 1, . . . ,m, M=m2 interpolation constraints

n∑
h=0

n∑
j=0

chj T
′∗
h (x1i′)T

∗
j (x2l′) > 0, i ′, l ′ = 1, . . . ,m′, M’=m′2 monotonicity constraints

n∑
h=0

n∑
j=0

chj T
∗
h (x1i′)T

′∗
j (x2l′) > 0, i ′, l ′ = 1, . . . ,m′, M’=m′2 monotonicity constraints

n∑
h=0

n∑
j=0

chj T
′′∗
h (x1i′)T

∗
j (x2l′) < 0, i ′, l ′ = 1, . . . ,m′, M’=m′2 concavity constraints

n∑
h=0

n∑
j=0

chj T
∗
h (x1i′)T

′′∗
j (x2l′) < 0, i ′, l ′ = 1, . . . ,m′, M’=m′2 concavity constraints

+ cross derivatives, chj = c+hj − c−hj , h, j = 0, . . . , n . . .
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Summary

Shape-preserving methods in one dimension:

1 Discretization of the state space.

2 Linear-quadratic models.

3 Linear interpolation.

4 Schumaker quadratic spline interpolation algorithm.

5 Chebyshev orthogonal polynomials with shape checking constraints.

Shape-preserving methods in higher dimensions:

1 Discretization of the state space.

2 Bilinear (multilinear) interpolation (only positivity and monotonicity).

3 Chebyshev approximation in R2 with shape checking constraints.

4 Tensor product approximation with only complete polynomials with
shape checking constraints.
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